Gerak Harmonik

Setiap gerak yang berulang dalam selang waktu yang sama disebut gerak periodik atau gerak harmonik.

Pegas

Bila sebuah benda pada salah satu ujungnya dipegang tetap, dan sebuah gaya F dikerjakan pada ujung yang lainnya, maka pada umumnya benda itu akan mengalami perubahan panjang Dx.

Tegangan dan Regangan

Berdasarkan arah gaya dan pertambahan panjangnya (perubahan bentuk), tegangan dibedakan menjadi tiga macam, yaitu tegangan rentang, tegangan mempat, dan tegangan geser.

Elastisitas

Beberapa obyek berubah bentuk akibat pengaruh gaya-gaya yang bekerja padanya. Jika sebuah obyek yang berupa kawat tembaga padanya digantungkan beban maka kawat tersebut akan bertambah panjang.

Elastisitas dan Hukum Hooke

Bila suatu benda dikenai sebuah gaya dan kemudian gaya tersebut dihilangkan, maka benda akan kembali ke bentuk semula, berarti benda itu adalah benda elastis.

Rabu, 18 Mei 2011

Materi Elastisitas

ELASTISITAS
Pada bab ini kita akan mengkaji salah satu kasus dimana materi atau obyek dalam keadaan alamiah. Keadaan ini disebut obyek dalam keadaan seimbang baik translasi maupun rotasi. Karena sifat inersia, keadaan ini selalu berusaha dipertahankan oleh obyek. Namun jika jumlah gaya luar (eksternal) yang bekerja pada obyek makin besar. Maka suatu saat obyek mengalami deformasi, atau bahkan bisa patah yakni pada saat gaya-gaya luar lebih besar dari gaya ikat antara atom-atom yang menyusun obyek (gaya internal). Keadaan deformasi pada obyek juga dapat terjadi jika vektor gaya-gaya yang bekerja tidak berada pada garis yang sama. Dalam keadaan demikian kita memerlukan besaran yang disebut besaran tensor, yang baru dijumpai pada kuliah fisika lanjutan.
1.Elastisitas, Tegangan dan Regangan
Pada bagian ini kita mempelajari efek dari gaya-gaya yang bekerja pada suatu obyek. Beberapa obyek berubah bentuk akibat pengaruh gaya-gaya yang bekerja padanya. Jika sebuah obyek yang berupa kawat tembaga padanya digantungkan beban (lihat Gambar (5.1), maka kawat tersebut akan bertambah panjang.

Gambar 5.1

Apabila elongasi (perpanjangan) kawat L cukup kecil dibandingkan dengan panjang mula-mula, maka secara eksperimen diperoleh bahwa L sebanding dengan berat beban atau gaya yang dikenakan pada benda [dikemukakan pertama kali oleh Robert Hooke (1635-1707)]. Kesetaraan ini dapat ditulis dalam bentuk persamaan :
F = k L…………………………..(5.1)
Dengan F menyatakan gaya atau berat tarik pada obyek, L adalah pertambahan panjang dan k adalah tetapan.
Persamaan (5.1) dikenal sebagai Hukum Hooke, berlaku untuk semua material padat; dari besi hingga tulang, tetapi hanya berlaku hingga titik tertentu. Jika gaya semakin diperbesar, obyek akan terus bertambah panjang dan akhirnya putus. Gambar (5.2) menunjukkan suatu tipe grafik elongasi terhadap gaya. Hingga titik yang disebut "batas kesetaraan", persamaan (5.1) merupakan pendekatan terbaik untuk beberapa jenis material, dan kurvanya adalah garis lurus. Selama perpanjangan masih dalam daerah elastis, yakni daerah di bawah batas elastisitas, obyek akan kembali ke panjang semula jika gaya yang bekerja dihilangkan. Di luar batas elastisitas adalah daerah plastis. Jika perpanjangan dilanjutkan pada daerah plastis, maka obyek akan mengalami deformasi permanen. Perpanjangan maksimum dicapai pada titik putus yang juga dikenal sebagai kekuatan ultimasi (ultimate strength) dari material.
Tabel 1 Kuat Ultimasi Beberapa Material

Tabel 2 Modulus Young, Modulus Puntir dan Modulus bulk beberpa Material

Besar elongasi dari suatu obyek, seperti batang yang ditunjukkan pada gambar 5.1, tidak hanya bergantung pada gaya yang dikenakan padanya, tetapi juga bergantung pada jenis material dan dimensi obyek. Jika kita bandingakan batang yang terbuat dari material yang sama tetapi berbeda panjang dan luas penampangnya, ditemukan bahwa jika gaya yang dikenakan sama, besar perpanjangan sebanding dengan gaya dan panjang mula-mula serta berbanding terbalik dengan luas penampangnya.
………………………..(5.2)
dimana Lo adalah panjang mula-mula obyek, A adalah luas penampang dan L adalah perubahan panjang berkenaan dengan gaya yang dikenakan. Y adalah konstanta yang dikenal sebagai modulus elastis, atau "Modulus Young". Nilai Y hanya bergantung pada jenis material. Nilai Modulus Young untuk beberapa jenis material diberikan pada tabel 5.1. Persamaan (5.2) lebih sering digunakan untuk perhitungan praktis dari pada persamaan (5.1) karena tidak bergantung pada ukuran dan bentuk obyek.

Gambar 5.2 Elongasi terhadap gaya
Persamaan (5.2) dapat ditulis kembali seperti berikut :
……………….(5.3)
Atau

dimana stress didefenisikan sebagai gaya per satuan luas, sedangkan strain sebagai ratio perubahan panjang terhadap panjang mula-mula.
Batang yang ditunjukkan pada Gambar 5.1 dikatakan berada di bawah tegangan merenggang (tensile stress). Bentuk tegangan lain adalah tegangan menekan (compressive stress), yang merupakan lawan dari tensile stress, dan tegangan memuntir (shear stress) yang terdiri dari dua gaya yang sama tetapi arahnya berlawanan dan tidak segaris (lihat Gambar 5.3).

Gambar 5.3 Tipe-tipe Tegangan : (a) Merenggang (b) Menekan (c) Menekan
Persamaan 5.2 dapat diterapkan baik untuk tegangan menekan maupun tegangan memuntir, untuk tegangan memuntir kita dapat tulis persamaan menjadi:
………………..(5.4)
tetapi LL0 dan A harus diinterpretasikan ulang sebagaimana ditunjukkan pada Gambar 5.3c. ingat bahwa A adalah luas dari permukaan paralel terhadap gaya yang dikenakan, dan L tegak lurus terhadap Lo, konstanta porposionalitas adalah 1/G, dengan G dikenal sebagai Modulus Puntir (share modulus) dan umumnya mempunyai harga 1/2 hingga 1/3 harga Modulus Young Y (lihat Tabel 5.2). Obyek empat persegi panjang berada dibawah tegangan memuntir dalam Gambar 5.3c tidak secara aktual dalam keseimbangan di bawah gaya-gaya yang ditunjukkan, jika jumlah torsi tidak sama dengan nol. Kalau obyek ternyata dalam keadaan seimbang, berarti harus ada dua gaya yang bekerja padanya yang membuat jumlah torsi sama dengan nol. Satu gaya bekerja ke arah vertikal ke atas di sisi kanan, dan yang lain ke arah vertikal ke bawah pada sisi kiri seperti ditunjukkan pada gambar 5.4.

Gambar 5.4 Keseimbangan Gaya-gaya dan Torsi untuk Tegangan Memuntir
Jika pada sebuah obyek bekerja gaya-gaya dari smua sisi, volume obyek akan berkurang. Keadaan seperti ini umumnya terjadi jika obyek berada di dalam fluida, dalam kasus ini fluida mendesakkan tekanan pada obyek di semua arah. Tekanan didefinisikan sebagai gaya persatuan luas, dan merupakan ekivalen dari tegangan (stress). Untuk keadaan ini perubahan volume V, ditemukan sebanding dengan volume mula-mula Vodan penambahan tekanan P.
Kita peroleh hubungan yang sama seperti persamaan (5.2) tetapi dengan konstanta proporsionalitas 1/B, dengan B adalah Modulus Bulk (bulk modulus ), dalam hal ini :
…………………..(5.5)
Tanda minus menunjukkan bahwa volume berkurang dengan bertambahnya tekanan. Harga-harga Modulus Bulk untuk beberapa jenis material diberikan pada Tabel 5.2. Selanjutnya inversi Modulus Bulk (1/B), disebut kompresibilitas (conpressibility), diberikan simbol K yaitu :
………….(5.6)


Minggu, 08 Mei 2011

Elastisitas

Elastisitas Zat Padat
Dibandingkan dengan zat cair, zat padat lebih keras dan lebih berat. sifat zat padat yang seperti ini telah anda pelajari di kelas 1 SLTP. kenapa Zat pada lebih keras? Molekul-molekul zat padat tersusun rapat sehingga ikatan diantara mereka relatif kuat. inilah sebabnya mengapa zat padat relatif sukar dipecah-pecah dengan tangan. sebagai contoh, untuk membelah kayu diperlukan alat lain dan gaya yang besar. setiap usaha memisahkan molekul-molekul zat padat, misalkan tarikan atau tekanan, akan selalu dilawan oleh gaya tarik menarik antar moleku zat padat itu sendiri.
sebuah pegas yang kita gantungi dengan sebuah beban pada salaha satu ujungnya, kan kembali ke panjangnya semula jika beban tersebut kita ambil kembali. sifat sebah benda yang dapat kembali ke bentuk semula seperti itu disebut elastisitas. Benda-benda yang memiliki elastisitas misalnya karet. baja, dan kayu, di sebut benda elastis. sebaliknya, benda-benda yang tidak memiliki sifat elastis, misalnya pelastisin, lumpur dan tanah liat disebut benda plastik. Bagaimana dengan bahan-bahan yang sehari-hari kita sebut “pelastik”? Apakah benda-benda itu benar-benar termasuk benda palastik? Ketika dibuat, benda-benda tersebut adalah benda pelastik yang merupakan bahan-bahan sintetis.kemudian, benda banda tersebut dipanas atau diolah secara kimiawi aghar menjadi kuat, dan akhirnya tidak merupakan benda plastik lagi. bagaimana pula dengan kaca? Mengejukan memang, bahwa kaca ternyata termasuk benda elastis. Fiber optik (serat optik) yang terbuat dari kaca dengan mudah yang terbuat dengan mudah dapat kita lengkungkan sama hal dengan tali. namun demikian jika gaya yang diberikan terlalu besar, kaca tidak hanya berubaha seperti benda pelastik tatapi juga akan terpecah-pecah.
Banyak bahan-bahan yang kita gunakan sehari-hari yang bersifat elastis tetapi hanya sementara saja.Ketika gaya yang diberikan pada bahan-bahan tersebut tidak akan kembali kebentuk semula. Keadaan ini dikatakan segbagai keadaan dimana batas elastisitas bahan telah terlampaui. Baja merupakan bahan elastik, jika gaya yang berkerja padanya terlalu besar, baja
yang sudah berubah bentuk tidak akan bisa kembali lagi kebentuknya semula dengan sendirinya. Sebagai contoh, rangka mobil yang rusak akibat kecelakan yang hebat tidak akan kembali kebentuknya semula, walaupun bahan rangka mobil termasuk bahan elastik.
Sampai dengan titik A, pegas masih bersifat elastisk, dimana dengan pertambahan panjang sebanding dengan pertambahan gayanya. namun, titik A ini jika beban kita sudah tidak sebanding dengan pertambahan gaya. jika penambahan beban kita teruskan, di titik b pegas akan putus. Daerah dimana pegas bersifat elastis, yaitu dari O sampai A, disebut daerah elastisk. Daerah ini mana pegas tidak bersifat elastik lagi, A sampai B, disebut daerah plastik. Titik yang merupakan awal daerah plastik dan akhir daerah elastik, titik A disebut batas elastisitas, sedangkan titik B disebut titik patah.

Tegangan dan Regangan
Berdasarkan arah gaya dan pertambahan panjangnya (perubahan bentuk), tegangan dibedakan menjadi tiga macam, yaitu tegangan rentang, tegangan mempat, dan tegangan geser. Pada Tabel 4.1 disajikan besar ketiga macamtegangan untuk berbagai jenis bahan.
Bahan
Tegangan rentang
(N/m2)
Tegangan mempat
(N/m2)
Tegangan geser
(N/m2)
Besi
Baja
Kuningan
Aluminium
Beton
Batu-bata
Marmer
Granit
Kayu (pinus)
Nilon
170 X 106
500 X 106
250 X 106
200 X 106
2 X 106
-
-
40 X 106
500 X 106
550 X 106
500 X 106
250 X 106
200 X 106
20 X 106
35 X 106
80 X 106
170 X 106
35 X 106
-
170 X 106
250 X 106
200 X 106
200 X106

 Sementara ini, jenis tegangan geser tidak akan kita bahas. Perhatikan gambar 4.9 yang menunjukan sebuah betang yang dikenal tegangan rantang dan tegangan mampat. Ketika tidak ada gaya yang dikerjakan, panjang batang tersebut L. Ketika gaya F dikerjakan untuk menghasilkan tegangan rentang, perubahan panjang batang adalah DLR, sedangkan ketika gaya tersebut diberkan untuk mengahasilkan tegangan mampat, perubahan panjang batang adalah DLM. Perubahan panjang D LR dan D LM tidak harus memiliki nilai yang sama, tetapi yang jelas, perubahan penjang ini tergantung pada panjang batang mula-mula. Dari sini kita definisikan suatu besaran baru yang disebut regangan, yaitu rasio antara perubahan panjang dengan panjang mula-mulanya.

Regangan = L ΔL ………. (4.2)
Modulus Elastik
Ketika sebuah gaya diberikan pada sebuah benda, maka ada kemungkinan bentuk berubah. Secara umum, reaksi benda terhadap gaya yang diberikan oleh nilai suatu besaran yang disebut modulus elastik.
Regangan = Regangan Tegangan ………. (4.3)
Untuk tegangan rentang, besar modulus elastik Y yang dinyatakan dengan

Y = Regangan rentang / Tegangan rentang

Biasanya, modulus elastik untuk tegangan dan regangan ini disebut modulus Young. Dengan demikian, modulus Young merupakan ukuran ketahanan suatau zat terhdap perubahan panjang ketika suatu gaya (atau beberapa gaya) diberikan pada benda.





Gaya Pegas


Setiap gerak yang berulang dalam selang waktu yang sama disebut gerak periodik atau gerak harmonik. Jika suatu partikel dalam gerak periodik bergerak bolak-balik melalui lintasan yang sama geraknya disebut gerak osilasi. Jika sebuah sistem fisis berosilasi dibawah pengaruh gaya F = -kx , dimana F adalah gaya-pemulih, k konstanta-gaya dan x simpangan, maka gerak benda ini adalah gerak harmonik sederhana.
Salah satu sistem fisis yang mengikuti gerak harmonik sederhana adalah Pegas-Benda. Sistem ini dapat dipergunakan untuk menentukan besar percepatan gravitasi bumi disuatu tempat.

Pegas
Bila sebuah benda pada salah satu ujungnya dipegang tetap, dan sebuah gaya F dikerjakan pada ujung yang lainnya, maka pada umumnya benda itu akan mengalami perubahan panjang Dx. Untuk bahan-bahan atau benda-benda tertentu, dan dalam batas tertentu perubahan panjang tersebut besarnya berbanding lurus dengan besar gaya yang menyebabkannya. Secara skalar dinyatakan oleh : F = k.Dx ( 2.1)
dengan k adalah sebuah konstanta dan gambaran inilah yang dinyatakan dengan hukum Hooke. Harus diperhatikan bahwa hukum Hooke ini tidak berlaku pada semua benda atau bahan dan untuk semua gaya yang bekerja padanya.

Bila benda yang diberi gaya tersebut adalah sebuah pegas yang digantung vertikal dengan panjang awalnya xo, maka pegas tersebut akan mengalami penambahan panjang sebesar Dx yang merupakan selisih panjang pegas setelah diberi gaya terhadap panjang semula, yang dinyatakan dengan :
F = k(x1-xo) ......................(2.2)
Gaya F di atas disebut gaya pemulih pegas dan untuk keadaan di atas, besarnya adalah F = mg. Bila perubahan panjang pegas dapat diukur dan k dapat dicari dengan cara atau persamaan lain, maka dengan menggantikan harga F pada persamaan (2.2) di atas dengan mg, kita dapat menghitung percepatan gravitasi.
Bila beban gantung diberi simpangan dengan amplitudo A yang tidak terlalu besar dan dilepaskan, maka pegas dan beban gantung itu akan bergetar bersama-sama dengan amplitudo dan frekuensi yang sama, sehingga pengamatan terhadap getaran pegas itu dapat diganti dengan pengamatan terhadap getaran beban gantung, dengan hasil yang sama, dan besarnya periode getar dapat dinyatakan dengan :
 ...................( 2.3 )
Jika harga T dan massa m dapat diperoleh lewat pengamatan, maka harga percepatan
gravitasi g dapat dihitung.

Minggu, 01 Mei 2011

Because

Assalamualaikum Warahmatullah Wabarokatuh...
This is my first blog,,blog ini merupakan kumpulan materi fisika, terutama materi fisika pada tingkat Sekolah Menengah..selain itu ini merupakan salah satu penilaian dalam mata kuliah Teknologi Informasi dan Komunikasi
Semoga dapat bermanfaat!!!

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites